Hints: Homework \#5

Problem 5.6

You should set the first derivative equal to zero to get $b=-2 a u$. Then with $q=3100$ and $u=28$ and use: $q=a u^{2}+b u$ with $b=-2 a u$ (so a is the only unknown) and solve for $a=-3.954$ so then $b=221.429$ from $b=-2 a u$. With these values you can solve the rest of the problem.

Problem 5.18

Both μ and the time until queue clearance t_{c} are not known (2 unknowns). The problem can be solved by getting two equation to solve for the 2 unknowns.

First, develop an equation for queue clearance where arrivals = departures. Solve this equation for μ which gives $\mu=6 t_{c} /\left(t_{c}-6\right)$.

Second, develop an equation for total delay which is known to be 500 veh-min (this equation will have unknowns μ and t_{c}). Substitute $\mu=6 t_{c} /\left(t_{c}-6\right)$, from above, into this equation and solve for t_{c} the only remaining unknown. Put this solved t_{c} value into $\mu=6 t_{c} /\left(t_{c}-6\right)$ to get μ.

Problem 5.52

This problem is an $\mathrm{M} / \mathrm{M} / \mathrm{N}$ queue (if the arrival and departure times are exponentially distributed that means they are Poisson). You apply Eq. 5.37 with 3 and 4 departure channels and look at the difference. To use Eq. 5.37 you need to get P_{0} from Equation 5.34. For the 3 both case $P_{0}=$ 0.013 and for the 4 booth case $P_{0}=0.048 \ldots$...you then use these values in equation 5.37 to find P_{3} and P_{4} respectively (subtract these and you are done).

